Metalearning is the study of principled methods that exploit metaknowledge to obtain efficient models and solutions by adapting machine learning and data mining processes. While the variety of machine learning and data mining techniques now available can, in principle, provide good model solutions, a methodology is still needed to guide the search for the most appropriate model in an efficient way. Metalearning provides one such methodology that allows systems to become more effective through e…
Metalearning is the study of principled methods that exploit metaknowledge to obtain efficient models and solutions by adapting machine learning and data mining processes. While the variety of machine learning and data mining techniques now available can, in principle, provide good model solutions, a methodology is still needed to guide the search for the most appropriate model in an efficient way. Metalearning provides one such methodology that allows systems to become more effective through experience.
This book discusses several approaches to obtaining knowledge concerning the performance of machine learning and data mining algorithms. It shows how this knowledge can be reused to select, combine, compose and adapt both algorithms and models to yield faster, more effective solutions to data mining problems. It can thus help developers improve their algorithms and also develop learning systems that can improve themselves.
The book will be of interest to researchers and graduate students in the areas of machine learning, data mining and artificial intelligence.
Metalearning is the study of principled methods that exploit metaknowledge to obtain efficient models and solutions by adapting machine learning and data mining processes. While the variety of machine learning and data mining techniques now available can, in principle, provide good model solutions, a methodology is still needed to guide the search for the most appropriate model in an efficient way. Metalearning provides one such methodology that allows systems to become more effective through experience.
This book discusses several approaches to obtaining knowledge concerning the performance of machine learning and data mining algorithms. It shows how this knowledge can be reused to select, combine, compose and adapt both algorithms and models to yield faster, more effective solutions to data mining problems. It can thus help developers improve their algorithms and also develop learning systems that can improve themselves.
The book will be of interest to researchers and graduate students in the areas of machine learning, data mining and artificial intelligence.
Atsiliepimai
Atsiliepimų nėra
0 pirkėjai įvertino šią prekę.
5
0%
4
0%
3
0%
2
0%
1
0%
Kainos garantija
Ženkliuku „Kainos garantija” pažymėtoms prekėms Knygos.lt garantuoja geriausią kainą. Jei identiška prekė kitoje internetinėje parduotuvėje kainuoja mažiau - kompensuojame kainų skirtumą. Kainos lyginamos su knygos.lt nurodytų parduotuvių sąrašu prekių kainomis. Knygos.lt įsipareigoja kompensuoti kainų skirtumą pirkėjui, kuris kreipėsi „Kainos garantijos” taisyklėse nurodytomis sąlygomis. Sužinoti daugiau
Elektroninė knyga
22,39 €
DĖMESIO!
Ši knyga pateikiama ACSM formatu. Jis nėra tinkamas įprastoms skaityklėms, kurios palaiko EPUB ar MOBI formato el. knygas.
Svarbu! Nėra galimybės siųstis el. knygų jungiantis iš Jungtinės Karalystės.
Tai knyga, kurią parduoda privatus žmogus. Kai apmokėsite užsakymą, jį per 7 d. išsiųs knygos pardavėjas . Jei to pardavėjas nepadarys laiku, pinigai jums bus grąžinti automatiškai.
Šios knygos būklė nėra įvertinta knygos.lt ekspertų, todėl visa atsakomybė už nurodytą knygos kokybę priklauso pardavėjui.
Atsiliepimai